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a b s t r a c t

The third-order shear deformation plate theory of Reddy [A simple higher-order theory

for laminated composite plates, J. Appl. Mech. 51 (1984) 745–752] is reformulated using

the nonlocal linear elasticity theory of Eringen. This theory has ability to capture the

both small scale effects and quadratic variation of shear strain and consequently shear

stress through the plate thickness. Analytical solutions of bending and free vibration of a

simply supported rectangular plate are presented using this theory to illustrate the

effect of nonlocal theory on deflection and natural frequency of the plates. Finally, the

relations between nonlocal third-order, first-order and classical theories are discussed

by numerical results.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Due to the rapid development of technology, especially in micro- and nano-scale fields, one must consider small scale
effects and atomic forces to obtain solutions with acceptable accuracy. Neglecting these effects in some cases may result in
completely incorrect solutions and hence wrong designs. Some methods (e.g., molecular dynamics [1–3]) are presented in
recent years which consider size effects and atomic lengths. Nonetheless, all of these method involve solving a large
number of equations, hence, they have difficulties in handling systems with large length and time scales. Therefore,
modeling of the large systems is left to continuum mechanics approach. One of the well known continuum mechanics
theory that includes small scale effects with good accuracy is the nonlocal theory of Eringen [4,5].

Compared to classical continuum mechanics theories, nonlocal theory of Eringen has capability to predict behavior of
the large nano-sized structures, while it avoids solving the large number of equations. Nonlocal theory of Eringen is based
on this assumption that the stress at a point is considered as a function of the strain field at all neighbor points in the
continuum body. The inter-atomic forces and atomic length scales directly come to the constitutive equations as material
parameters [6]. Thus, it appears that nonlocal continuum mechanics could potentially play a useful role in near future.
Hence, many papers have been published on this topic, especially for analyzing of nano-structures (see, for example, the
nonlocal theory of longitudinal waves in an elastic circular bar [7], nonlocal theory solution of two collinear cracks in the
functionally graded materials [8], buckling analysis of CNT based on nonlocal theory [9], nonlocal theories of beams
[10,11]). Contrary to one-dimensional nonlocal theories, there are only a few studies on two-dimensional ones [12].
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Recently, some researchers have studied micro and nano plates for different applications [13,14]. These studies were
based on classical and first-order theory of plates. To analyse two-dimensional nano plate with accurate stress fields,
further studies are needed. In the classical plate theory, the effect of the transverse shear strain and shear stress are
neglected. In the first-order shear deformation theory, the transverse shear strain and consequently transverse shear stress
are represented as constant through the plate thickness, which is a gross approximation of the true variation that vanishes
on the top and bottom plane of the plate. To validate this discrepancy between the true variation and the constant state of
stress, shear correction factor is introduced such that the energy due to the transverse shear stress in both cases is the
same.

The third-order shear deformation theory of Reddy [15] is based on a displacement field that includes the cubic term in
the thickness coordinate, hence the transverse shear strain and hence stress are represented as quadratic through the
plate thickness and vanish on the bounding planes of the plate. Consequently, the shear correction factor is avoided in
this theory. In spite of relatively more complex algebraic equations and computational effort compared to the classical and
first-order theories, the third-order shear deformation theory yields results that are close to 3-D elasticity solutions [16,17].
There are some articles that incorporate the third-order plate theory to obtain more accurate results [15–18]. Therefore, it is
useful to study the extension of the third-order plate theory to include the size effects. The present study deals with the use
of the nonlocal third-order plate theory in bending and vibration response of plates.

2. Review of nonlocal elasticity

In nonlocal elasticity theory, it is assumed that the stress at a point in a continuum body is function of the strain at all
neighbor points of the continuum, hence the effects of small scale and atomic forces are considered as material parameters
in the constitutive equation. Following experimental observations, Eringen proposed a constitutive model that expresses
the nonlocal stress tensor at point x as

tij ¼

Z
v
aðjx�� xjÞsijðx

�Þduðx�Þ, (1)

where the volume integral in Eq. (1) is over the region v occupied by the body and sij is the Hookean stress tensor defined
as

sij ¼ cijkl�kl (2)

and aðjx�� xjÞ is the kernel function which is normalized over the volume of the body, i.e.,
R

v aðjx
�jÞdv ¼ 1. This function can

be obtained by matching the lattice dynamics with nonlocal results [5]. For example, the kernel function for 2-D problems
has the form

aðjxjÞ ¼ ð2pl2t2Þ�1K0ðjxj=ltÞ; t ¼ e0a=l, (3)

where K0 is the modified Bessel function, a and l are internal and external characteristic lengths, and e0 is material constant
which is defined by the experiment. On the other hand, nonlocal elasticity involves spatial integrals that represent
weighted averages of the contributions of the strain of all points in the continuum body to the stress tensor at a point.

In the nonlocal linear elasticity, equations of motion can be obtained from nonlocal balance law

tij;j þ f i ¼ r €ui, (4)

where i, j take the symbols x, y, z and fi, r and ui are the components of the body force, mass density and displacement
vector [5]. By substituting Eq. (1) into Eq. (4), the integral form of nonlocal constitutive equation is obtained. Because
solving an integral equation is more difficult than a differential equation, Eringen [5,6] proposed a differential form of the
nonlocal constitutive equation as

sij;j þLðf i � r €uiÞ ¼ 0 (5)

in which the linear differential operator L defined by

L ¼ 1� mr2; m ¼ ðe0aÞ2. (6)

By applying this operator on Eq. (1), the constitutive equation can be simplified to

½1� mr2
�tij ¼ sij (7)

Eq. (7) is simpler and more convenient than the integral relation (1) to apply to various linear elasticity problems.

3. Plate equations of nonlocal elasticity

Using Eqs. (2) and (7), stress resultants introduced in plate and shell theories can be reformulated in term of strain for
the nonlocal theory. In plate theories based on plane-stress assumption, we take szz ¼ 0 and the resulting theory becomes
two-dimensional.
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Consider a (x, y, z) coordinate system with the xy-plane coinciding with the mid-plane of the plate. So the stress–strain
relations of plane-stress can be expressed as

sab ¼ ĉabor�or, (8)

where ĉabor ¼ cabor � c�bzzczzor=czzzz.
and transverse shear stress–strain relation is expressed as

saz ¼ 2ĉazoz�oz, (9)

where a, b, o and r take the symbols x, y.
The relations between stress resultants in local theory and nonlocal theory are defined by integrating Eq. (7) through the

plate thickness:

½1� mr2
�Nij ¼ NL

ij,

½1� mr2
�Mij ¼ ML

ij,

½1� mr2
�Pij ¼ PL

ij, (10)

where

Nab
Mab
Pab

8><
>:

9>=
>; ¼

Z h=2

�h=2
tab

1

z

z3

8><
>:

9>=
>;dz;

Naz

Raz

( )
¼

Z h=2

�h=2
taz

1

z2

� �
dz:, (11)

NL
ab

ML
ab

PL
ab

8>>><
>>>:

9>>>=
>>>;
¼

Z h=2

�h=2
sab

1

z

z3

8><
>:

9>=
>;dz;

NL
az

RL
az

8<
:

9=
; ¼

Z h=2

�h=2
saz

1

z2

� �
dz. (12)

The superscript L denoted the quantities in local third-order shear deformation theory and h is the thickness of the plate.
The governing equation of the plate in nonlocal theory can be determined by integrating Eq. (4) through the plate

thickness and noting Eq. (11)

Nia;a þ Fi ¼

Z h=2

�h=2
r €ui dz, (13)

where Fi ¼
R h=2
�h=2

f idz. By multiplying Eq. (4) by z and then integrating from it through plate thickness and using
integration-by-parts, we obtain

Mab;b � Naz ¼

Z h=2

�h=2
r €ua � z dz. (14)

Similarly, for higher-order stress resultants, Eq. (4) is multiplied by higher powers of the thickness coordinate z and
integrating through the plate thickness. We obtain

Pab;b � 3Raz ¼

Z h=2

�h=2
r €ua � z3 dz. (15)

In general, differential operator r in Eq. (7) is the 3-D Laplace operator. For 2-D problems, the operator r may be reduced
to 2-D one. Thus, the linear differential operator L becomes

L�
¼ 1� m q2

qx2
þ

q2

qy2

 !
. (16)

It is clear that the operator L� is independent of the z direction.
To express the governing equations of motion in terms of local stress resultants, the reduced linear differential operator

L0 is used in Eqs. (13)–(15)

NL
ia;a ¼ 1� m q2

qx2
þ

q2

qy2

 !" # Z h=2

�h=2
r €ui dz� Fi

 !
, (17)

ML
ab;b � NL

az ¼ 1� m q2

qx2
þ

q2

qy2

 !" # Z h=2

�h=2
r €ua � z dz

 !
, (18)
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PL
ab;b � 3RL

az ¼ 1� m q2

qx2
þ

q2

qy2

 !" # Z h=2

�h=2
r €ua � z3 dz

 !
. (19)

Later, the equations of motion for nonlocal third-order shear deformation plate theory will be presented based on
Eqs. (17)–(19).

4. Nonlocal third-order shear deformation theory

The third-order shear deformation theory (TSDT) extends the first-order theory by assuming that shear strain and
consequently shear stress are not constant through the plate thickness (see Reddy [15,17]). The displacement field of the
third-order theory of plates is given by

ua ¼ u0
a þ zfa �

4z3

3h2
ðfa þw0

;aÞ; uz ¼ w0, (20)

where ua are the inplane displacements of point on the mid-plane (i.e., z ¼ 0) at t ¼ 0, uz is the transverse displacement of
the mid-plane of the plate, and fa denotes the slope of the transverse normal on mid-plane.

The nonzero components of the strain can be defined by substituting Eq. (20) into the linear strain–displacement
relations of the TSDT [17].

�ab ¼ �
0
ab þ z�1

ab þ z3�3
ab, (21)

with

�0
ab ¼

1
2ðu

0
a;b þ u0

b;aÞ,

�1
ab ¼

1
2ðfa;b þ fb;aÞ,

�3
ab ¼

c1

2
ðfa;b þfb;a þ 2w0

;abÞ.

The transverse shear strain components are of the form

gaz ¼ g0
az þ z2g2

az, (22)

with

g0
az ¼

1
2ðfa þw0

;aÞ; g2
az ¼ �

c2

2
ðfa þw0

;aÞ.

The parameters c1, c2 are defined as

c1 ¼
4

3h2
; c2 ¼ 3c1 ¼

4

h2
.

By substituting the displacement field into Eqs. (13)–(15), we obtain

Ni;a;a þ Fi ¼ I0 €u
0
i , (23)

Mab;b � Naz ¼ I2
€fa � c1I4ð

€fa þ €w0
;aÞ, (24)

Pab;b � 3Raz ¼ I4
€fa � c1I6ð

€fa þ €w0
;aÞ. (25)

Then Eq. (23) for i ¼ 3 and Eq. (24) can be combined with Eq. (25) to drive the following governing equations for flexural
response of the nonlocal third-order plate theory,

Naz;a � c2Raz;a þ qz þ c1Pab;ab ¼ I0 €w
0
þ c1½I4

€fa;a � c1I6ð
€faa þ €w0

;aaÞ, (26)

Mab;b � c1Pab;b � Naz þ c2Raz ¼ I2
€fa � c1I4ð

€fa þ €w0
;aÞ � c1½I4

€fa þ €w0
;aÞ. (27)

The local resultant forces and moments for the third-order plate theory can be obtained by substituting Eqs. (8), (9), (21)
and (22) into Eq. (12)

NL
ab ¼ Aabor�

0
or þ Babor�

1
or þ Dabor�

3
or, (28)

NL
zb ¼ 2Azbzrg

0
zr þ 2Czbzrg

2
zr, (29)

ML
ab ¼ Babor�

0
or þ Cabor�

1
or þ Eabor�

3
or, (30)
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RL
zb ¼ 2Czbzrg

0
zr þ 2Ezbzrg

2
zr, (31)

PL
ab ¼ Dabor�

0
ar þ Eabor�

1
or þ Fabor�

3
or, (32)

where

ðAabor;Babor;Cabor;Dabor; Eabor; FaborÞ ¼
Z h=2

h=2
ĉaborð1; z; z

2; z3; z4; z6Þdz.

In Eqs. (23), (26) and (27), we derived the governing equations for nonlocal third-order plate theory. By applying linear
differential operator L on Eqs. (23), (26) and (27) and noting Eqs. (28)–(32), the equations of motion for nonlocal third-
order shear deformation theory can be obtained in terms of displacements as

Aaboru0
o;rB þ Baborfo;rB � c1Daborðfo;rB þw0

;borÞ þ ½1� mr
2
�ðFa � I0 €u

0
aÞ ¼ 0, (33)

Azazrðfr;a þw0
;arÞ � c2Czazrðfr;a þw0

;arÞ

� c2½czazrðfr;a þw0
;arÞ � c2Ezazrðfr;a þw0

;arÞ�

þ c2½Daboru0
o;rab þ Eaborfo;rab � c1Faborðfo;rab þw0

;aborÞ�

þ ½1� mr2
�ðqz � I0 €w

0
þ c1�I4

€fa;a � c1I6ð
€fa;a þ €w0

;a;aÞ�Þ ¼ 0, (34)

Baboru0
o;rB þ caborfo;rB � c1Eaborðfo;rB þw0

;borÞ

� c1½Daboru0
o;rB þ Eaborfo;rB � c1Faborðfo;rB þw0

;borÞ�

� Azazrðfr þw0
;rÞ þ c2czazrðfr þw0

;rÞ þ c2½czazrðfr þw0
;rÞ

� c2Ezazrðfr þw0
;rÞ � ½1� mr

2
�½I2

€fa � c1I4ð
€fa þ €w0

;aÞ

� c2ðI4
€fa � c1I6ð

€fa þ €w0
;aÞÞ� ¼ 0, (35)

where Ik ¼
R h=2
�h=2

rðzÞk dz ðk ¼ 0;2;4;6Þ.
5. Variational statements

The variational statements facilitate the direct derivation of the equations of motion in term of the displacements.
Hence, we also present the variational form of governing equations which is useful in integral formulations and
displacement finite element formulations.

The governing equations of the third-order nonlocal plate theory can be derived using dynamic version of the principle
of virtual displacement (Hamilton’s principle)

0 ¼

Z T

0
ðdU þ dV � dKÞdt.

The Hamilton principle in case of nonlocal third-order plate theory takes the form

0 ¼

Z t

0

Z
O

Nxxd�0
xx þMxxd�1

xx � Pxxd�3
xx þ Nyyd�0

yy

þMyyd�1
yy � Pxxd�3

yy þ Nxydg0
yy þMxydg1

xy � Pxxdg3
xy

þ Nxzdg0
xz � Rxzdg1

xz þ Nyzdg0
yz � Ryzdg1

yz � qzdw0

þ mðqz;xdw0
;x þ qz;ydw0

;yÞ � I0 _u
0
xd _u

0
x þ I0mð _u

0
x;xd _u

0
x;x þ _u0

x;yd _u
0
x;yÞ

� I0 _u
0
yd _u

0
y þ I0mð _u

0
y;xd _u

0
y;x þ _u0

y;yd _u
0
y;yÞ � I0 _w

0d _w0

þ I0mð _w
0
;xd _w

0
;x þ _w0

;yd _w
0
;yÞ � ðI2

_fx þ _w0
;xÞd _fx

þ m½ðI2
_fx;x � c1I4ð

_fx;x þ _w0
;xxÞÞd _fx;x

þ ðI2
_fx;y � c1I4ð

_fx;y þ _w0
;xyÞÞd _fx; y� ðI2

_fy � c1I4ð
_fy þ _w0

;yÞÞd _fyÞÞd _fy
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þ m½ðI2
_fy;x � c1I4ð

_fy;x þ _w0
;yxÞÞd _fy;x

þ ðI2
_fy;y � c1I4ð

_fy;y þ _w0
;yyÞÞd _fy;y

þ c1ðI4
_fx;x � c1I6ð

_fx;x þ _w0
;xxÞÞðd _fx;x þ _w0

;xx

� m½c1ðI4
_fx;x � c1I6ð

_fx;y þ _w0
;xyÞÞðd _fx;y þ d _w0

;xyÞ

þ c1ðI4
_fx;y � c1I6ð

_fx;y þ _w0
;xyÞÞðd _fx;y þ d _w0

;xyÞ�

þ c1ðI4
_fy � c1I6ð

_fy þ _w0
;yÞÞðd _fy þ d _w0

y Þ

� m½c1ðI4
_fy;x � c1I6ð

_fy;x þ _w0
;yxÞÞðd _fy;x þ d _w0

;yxÞ

þ c1ðI4
_fy;y � c1I6ð

_fy;y þ _w0
;yyÞÞðd _fy;y þ d _w0

;yyÞ�dx dy dt. (36)

By substituting nonlocal stress resultants in term of the displacements into the principle of virtual displacements and
integrate by part, the equations of motion can be obtain

dux : Nxx;x þ Nxy;y � ð1� mr2
ÞI0 €u

0
x ¼ 0, (37)

duy : Nxy;x þ Nyy;y � ð1� mr2
ÞI0 €u

0
y ¼ 0, (38)

dw0 : Nzx;x þ Nzy;y � c2ðRzx;x þ Rzy;yÞ þ c1ðPxx;xx þ Pyy;yy þ 2Pxy;xyÞ

� ð1� mr2
½qz � I0 €w

0
� c1I4ð

€fx;x þ
€fy;y � c2

1I6ð
€fx;x þ

€fy;y þ €w0
;xx þ €w0

;yy ¼ 0, (39)

dfx : Mxx;y þMxy;y � c1ðPxx;x þ Pxy;yÞNzx þ c2Rzx

� ð1� mr2
Þ½I2

€fx � c1I4ð
€fx þ €wo

;xÞ � c2ðI4
€fx � c1I6ð

€fx þ €wo
;xÞÞ� ¼ 0, (40)

dfy : Mxy;y þMyy;y � c1ðPxy;x þ Pyy;yÞNzy þ c2Rzy

� ð1� mr2
Þ½I2

€fy � c1I4ð
€fy þ €wo

;yÞ � c2ðI4
€fy � c1I6ð

€fy þ €wo
;yÞÞ� ¼ 0. (41)

It can be verified that equations of motion associated with the variational statements are the same as Eqs. (33)–(35). In
addition, the equations of motion of the conventional third-order plate theory are obtained from above equations by setting
m ¼ 0 (see Reddy [17]).

6. The Navier solutions of nonlocal third-order shear deformation theory

Here, analytical solutions for bending and vibration of simply supported plates are presented using the nonlocal third-
order plate theory to illustrate the small scale effects on deflections and natural frequencies of the plates. In order to
simplify the governing equations, we consider the case of orthotropic rectangular plate with simply supported boundary
conditions. For this case, In-plane displacements are uncoupled from the bending deflections (i.e., the coupling stiffness
Babor and Dabor are zero in Eqs. (34) and (35) for an orthotropic plate). For the static case, all time derivative terms are set
to zero.

For an orthotropic plate, the local bending moments and higher-order stress resultants are related to the flexural (i.e.,
bending) deflections by

ML
xx

ML
yy

ML
xy

NL
yz

NL
xz

2
666666666664

3
777777777775
¼

C11 C12 0 0 0

C12 C22 0 0 0

0 0 C66 0 0

0 0 0 A44 0

0 0 0 0 A55

2
666666664

3
777777775

fx;x

fy;y

fx;y þ fy;x

w0
;y þ fy

w0
;x þ fx

2
66666666664

3
77777777775

�

c1E11 c1E12 0 0 0

c1E12 c1E22 0 0 0

0 0 c1C66 0 0

0 0 0 c2C44 0

0 0 0 0 c2C55

2
666666664

3
777777775

fx;x þw0
;xx

fy;y þw0
;yy

fx;y þfy;x þ 2w0
;xy

w0
;y þ fy

w0
;x þ fx

2
666666666664

3
777777777775

, (42a)
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PL
xx

PL
yy

PL
xy

RL
yz

RL
xz

2
666666666664

3
777777777775
¼

E11 E12 0 0 0

E12 E22 0 0 0

0 0 E66 0 0

0 0 0 C44 0

0 0 0 0 C55

2
666666664

3
777777775

fx;x

fy;y

fx;y þfy;x

w0
;y þfy

w0
;x þfx

2
66666666664

3
77777777775

�

c1F11 c1F12 0 0 0

c1F12 c1F22 0 0 0

0 0 c1F66 0 0

0 0 0 c2E44 0

0 0 0 0 c2E55

2
666666664

3
777777775

fx;x þw0
;xx

fy;y þw0
;yy

fx;y þfy;x þ 2w0
;xy

w0
;y þ fy

w0
;x þ fx

2
666666666664

3
777777777775

. (42b)

Then the decoupled bending equations of motion can be obtained from Eqs. (34) and (35) as

A55ðfx;x þw0
;xxÞ þ A44ðfy;y þw0

;yyÞ � 2c2C55ðfx;x þw0
;xxÞ

� 2c2C44ðfy;y þw0
;yyÞ þ c2

2E55ðfx;x þw0
;xxÞ þ c2

2E44ðfy;y þw0
;yyÞ

þ c1E11fx;xxx þ c1E66fx;xyy þ c1ðE12 þ E66Þfy;xxy � c2
1F11ðfx;xxx þo0

;xxxxÞ

� c2
1F12ðfy:xxy þw0

;xxyyÞ � c2
1F66ðfx;xyy þfy;xxy þ 2w0

;xxyyÞ

þ c1E22fy;yyy þ c1E66fy;xxy þ c1ðE12 þ E66Þfx;xyy � c2
1F22ðfy;yyy þo0

;yyyyÞ

� c2
1F12ðfx:xyy þw0

;yyxxÞ � c2
1F66ðfy;xxy þfx;xyy þ 2w0

;yyxxÞ

þ ½1� mr2
�ðqz � I0 €w

0
� c1½I4ð

€fy;y þ
€fx;xÞ

� c1I6ð
€fx;x þ €w0

;xx þ
€fy;y þ €w0

;yyÞ�Þ ¼ 0, (43)

c11fx;xx þ C66fx;yy þ ðC12 þ C66Þfy;xy � c1E11ðfx;xx þw0
;xxxÞ

� c1E12ðfy;xy þw0
;xyyÞ þ c1E66ðfx;yy þ fy;xy þ 2w0

;xyyÞ

� c1E11fx;xx � c1E66fx;yy � c1ðE12 þ E66Þfy;xy þ c2
1F11ðfx;xx þw0

;xxxÞ

þ c2
1F12ðfy;xy þw0

;xyyÞ þ c2
1F66ðfx;yy þ fy;xy þ 2w0

;xyyÞ

� A55ðfx þw0
;xÞ þ 2c2C55ðfx þw0

;xÞ � c2
2E55ðfx þw0

;xÞ

� ½1� mr2
�ðI2

€fx � c1I4ð
€fx þ €w0

;xÞ � c1ðI4
€fx � c1I6ð

€fx þ €w0
;xÞÞÞ ¼ 0, (44)

C22fy;yy þ C66fy;xx þ ðC12 þ C66Þfx;xy � c1E22ðfy;yy þw0
;yyyÞ

� c1E12ðfx;xy þw0
;yxxÞ � c1E66ðfy;xx þfx;xy þ 2w0

;yxxÞ

� c1E22fy;yy � c1E66fy;xx � c1ðE12 þ E66Þfx;xy þ 2w0
;yxx

þ c2
1F12ðfx;xy þw0

;yxxÞ þ c2
1F66ðfy;xx þfx;xy þ 2w0

;yxxÞ

� A44ðfy þw0
;yÞ þ 2c2C44ðfy þw0

;yÞ � c2
2E44ðfy þw0

;yÞ

� ½1� mr2
�ðI2

€fy � c1I4ð
€fy þ €w0

;yÞ � c1ðI4
€fy � c1I6ð

€fy þ €w0
;yÞÞÞ ¼ 0. (45)

These equations may be reduced to those of a nonlocal third-order beam theory when the case of cylindrical bending is
considered (see Reddy [10]).

For a simply supported plate, the boundary conditions are of the form

w0ðx;0; tÞ ¼ w0ðx; b; tÞ ¼ w0ð0; y; tÞ ¼ w0ða; y; tÞ ¼ 0,

fxðx;0; tÞ ¼ fxðx; b; tÞ ¼ fyð0; y; tÞ ¼ fxða; y; tÞ ¼ 0,

Mxxð0; y; tÞ ¼ Mxxða; y; tÞ ¼ Myyðx;0; tÞ ¼ Myyðx; b; tÞ ¼ 0,

Pxxð0; y; tÞ ¼ Pxxða; y; tÞ ¼ Pyyðx;0; tÞ ¼ Pyyðx; b; tÞ ¼ 0. (46)
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For this set of boundary conditions, the Navier solution can be obtained [17]. According to the Navier solution theory, the
generalized displacements at middle of the plane (z ¼ 0) are expanded in double Fourier series as

w0ðx; y; tÞ ¼
X1
n¼1

X1
m¼1

Wmm � sinðznxÞ � sinðZmyÞ � eionmt ,

fxðx; y; tÞ ¼
X1
n¼1

X1
m¼1

Wnm � cosðznxÞ � sinðZmyÞ � eionmt ,

fyðx; y; tÞ ¼
X1
n¼1

X1
m¼1

Ynm � sinðznxÞ � cosðZmyÞ � eionmt . (47)

So that the boundary conditions in Eq. (46) are identically satisfied. In addition, the distributed transverse load is also
expanded in double Fourier series as

qzðx; y; tÞ ¼
X1
n¼1

X1
m¼1

Qnm � sinðznxÞ � sinðZmyÞ � eionmt , (48)

where Qnm has different values for different kind of loading [17]. For example, for uniform load with magnitude of q0,

Qnm ¼
16q0

p2mn
.

By substituting Eqs. (47) and (48) into Eqs. (34) and (35), matrix form is as follow

K11 �m11ðonmGnmÞ
2 K12 �m12ðonmGnmÞ

2 K13 �m13ðonmGnmÞ
2

K21 �m12ðonmGnmÞ
2 K22 �m22ðonmGnmÞ

2 K23

K31 �m13ðonmGnmÞ
2 K32 K33 �m33ðonmGnmÞ

2

2
664

3
775

Wnm

Xnm

Ynm

8><
>:

9>=
>; ¼

ðGnmÞ
2

0

0

2
64

3
75Qnm, (49)

K11 ¼ ðA55 � 2c2C55 þ c2
2E55Þz

2
n þ ðA44 � 2c2C44 þ c2

2E55ÞZ2
m

þ c2
1½F11z

4
n þ 2F12z

2
nZ

2
m þ 4F66z

2
nZ

2
m þ F22Z4

m�,

K12 ¼ ðA55 � 2c2C55 þ c2
2E55Þzn � c1½E11 � c1F11Þz

3
n þ ðE12 � c1F12 þ 2E66 � 2c1F66ÞznZ2

m�,

K13 ¼ ðA44 � 2c2C44 þ c2
2E44ÞZm � c1½E22 � c1F22Þz

3
n þ ðE12 � c1F12 þ 2E66 � 2c1F66ÞznZ2

m�,

K22 ¼ ðC11 � 2c1E11 þ c2
1F11Þz

2
n þ ðC66 � 2c1E66 þ c2

1F66ÞZ2
m þ ðA55 � 2c2C55 þ c2

2E55Þ,

K23 ¼ ðC12 � 2c1E12 þ c2
1F12 þ c66 � 2c1E66 þ c2

1F66ÞznZm,

K33 ¼ ðC22 � 2c1E22 þ c2
1F22ÞZ2

m þ ðC66 � 2c1E66 þ c2
1F66Þz

2
n þ ðA44 � 2c2C44 þ c2

2E44Þ, (50a)

m11 ¼ I0 � c2
1I6ðz

2
n þ Z

2
mÞ; m12 ¼ ðc1I4 � c2

1I6Þzn; m13 ¼ ðc1I4 � c2
2I6ÞZm,

m22 ¼ ðI2 � 2c1I4 þ c2
1I6Þ; m33 ¼ ðI2 � 2c1I4 þ c2

1I6Þ, (50b)

Gnm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ mðz2

n þ Z2
mÞ

q
. (50c)

Note that Gnm is greater than unity.

6.1. Bending solution

For static bending analysis, we consider Wnm, Xnm, Ynm and Qnm to be time-independent; consequently, the time
derivative terms in Eq. (45) and therefore, terms containing omn are omitted. Eq. (49) has been solved for each pair of
integers (m,n) to determine the magnitude of Wnm, Xnm, Ynm and the total solution is obtained from Eq. (47) (without the
time terms) as

Wnm ¼ ðGnmÞ
2 � ðWL

nmÞmax,

Xnm ¼ ðGnmÞ
2 � ðXL

nmÞmax,
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Ynm ¼ ðGnmÞ
2 � ðYL

nmÞmax, (51)

where

ðWL
nmÞmax ¼

K22K33K2
23

l
Qnm,

ðXL
nmÞmax ¼

K13K23 � K12K33

l
Qnm,

ðYL
nmÞmax ¼

K12K23 � K22K13

l
Qnm,

l ¼ K11K22K33 � K2
23K11 � K2

12K33 � K2
13K22 þ 2K12K13K23. (52)

Since Gnm41, it can be seen that the displacement predicted by nonlocal theory is larger than local (or conventional)
theory.

6.2. Free vibration solution

To obtain natural frequencies of a simply supported rectangular plate using the nonlocal third-order theory, we assume
that Qnm ¼ 0. Following the same procedure as in the case of bending (i.e., expanding the displacement field in double
Fourier series and substituting into the equations of motion)

We obtain the following eigenvalue problem for the determination of the natural frequencies:

K11 �m11ðonmGnmÞ
2 K12 �m12ðonmGnmÞ

2 K13 �m13ðonmGnmÞ
2

K21 �m12ðonmGnmÞ
2 K22 �m22ðonmGnmÞ

2 K23

K31 �m11ðonmGnmÞ
2 K32 K33 �m33ðonmGnmÞ

2

2
664

3
775

��������

��������
¼ 0. (53)

The natural frequencies of simply supported plate in nonlocal third-order plate theory are obtained as

ðonmÞ1 ¼
ðoL

nmÞ1

Gnm
; ðonmÞ2 ¼

ðoL
nmÞ2

Gnm
; ðonmÞ3 ¼

ðoL
nmÞ3

Gnm
, (54)
Fig. 1. Variation of nonlocal coefficient Fnm with respect to non-dimensional nonlocal parameter
ffiffiffiffimp =a and aspect ratio.
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Table 1
Nonlocal coefficient Fnm in terms of nonlocal parameter

ffiffiffiffimp =a and aspect ratio a/b.

ffiffiffiffimp =a 0 0.2 0.4 0.6

(n,m) a/b ¼ 1

(1,1) 1.0000 0.7477 0.4904 0.3512

(1,2) 1.0000 0.5801 0.3353 0.2309

(1,3) 1.0000 0.4497 0.2440 0.1655

(2,1) 1.0000 0.5801 0.3353 0.2309

(2,2) 1.0000 0.4906 0.2708 0.1844

(2,3) 1.0000 0.4040 0.2155 0.1456

(3,1) 1.0000 0.4497 0.2440 0.1655

(3,2) 1.0000 0.4040 0.2155 0.1456

(3,3) 1.0000 0.3514 0.1844 0.1241

a/b ¼ 0.5

(1,1) 1.0000 0.8183 0.5799 0.4287

(1,2) 1.0000 0.7475 0.4904 0.3512

(1,3) 1.0000 0.6618 0.4038 0.2823

(2,1) 1.0000 0.6111 0.3601 0.2492

(2,2) 1.0000 0.5799 0.3353 0.2309

(2,3) 1.0000 0.5370 0.3033 0.2076

(3,1) 1.0000 0.4637 0.2531 0.1718

(3,2) 1.0000 0.4496 0.2440 0.1655

(3,3) 1.0000 0.4287 0.2309 0.1562

Table 2

Non-dimensional maximum center deflection ðw̄ ¼ �w� ðEh2=q0a4Þ � 102
Þ in simply supported plate subjected to uniform load q0 (q0 ¼ 1, a ¼ 10,

E ¼ 30�106, n ¼ 0.3, 100 term series).

a/b a/h m Third-order First-order Classical

1 10 0 4.1853 4.1853 4.0083

0.5 4.5607 4.5608 4.3702

1 4.9362 4.9363 4.7322

1.5 5.3116 5.3118 5.0942

2 5.6871 5.6873 5.4561

2.5 6.0625 6.0628 5.8181

3 6.4380 6.4383 6.1800

50 0 4.0154 4.0154 4.0083

0.5 4.3779 4.3779 4.3702

1 4.7404 4.7404 4.7322

1.5 5.1029 5.1029 5.0942

2 5.4654 5.4654 5.4561

2.5 5.8279 5.8279 5.8181

3 6.1904 6.1904 6.1800

100 0 4.0100 4.0100 4.0083

0.5 4.3721 4.3721 4.3702

1 4.7342 4.7342 4.7322

1.5 5.0963 5.0963 5.0942

2 5.4584 5.4584 5.4561

2.5 5.8205 5.8205 5.8181

3 6.1826 6.1826 6.1800

2 10 0 0.7169 0.7170 0.6483

0.5 0.8767 0.8768 0.7946

1 1.0364 1.0366 0.9408

1.5 1.1961 1.1965 1.0870

2 1.3558 1.3563 1.2332

2.5 1.5155 1.5161 1.3794

3 1.6752 1.6759 1.5256

50 0 0.6511 0.6511 0.6483

0.5 0.7978 0.7978 0.7946

1 0.9446 0.9446 0.9408

1.5 1.0914 1.0914 1.0870

2 1.2381 1.2381 1.2332

2.5 1.3849 1.3849 1.3794

3 1.5316 1.5316 1.5256

100 0 0.6490 0.6490 0.6483

0.5 0.7954 0.7954 0.7946

1 0.9417 0.9417 0.9408

1.5 1.0881 1.0881 1.0870

2 1.2344 1.2344 1.2332

2.5 1.3808 1.3808 1.3794

3 1.5271 1.5271 1.5256

R. Aghababaei, J.N. Reddy / Journal of Sound and Vibration 326 (2009) 277–289286
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where the superscript L denoted the quantities in local third-order shear deformation theory. Between these three
frequencies for each combination of n and m, the lowest one is related to transverse deflection and two remained
frequencies related to shear modes [19,20].
7. Numerical results and discussion

The analytical bending and free vibration solutions presented in Eqs. (51) and (54) are numerically evaluated here for an
isotropic plate to discuss the effects of nonlocal parameter m on the plate bending and vibration response. We consider the
following parameter that defines the relation between nonlocal and local theory in both bending and free vibration cases

Fnm ¼
1

Gnm
¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ mðz2

n þ Z2
mÞ

q �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ p2ð
ffiffiffiffimp =aÞ2ðn2 þm2ða=bÞ2Þ

q , (55)

where
ffiffiffiffimp =a is a non-dimensional nonlocal parameter and a/b is aspect ratio of the plate. Note that, because GnmZ1, Fnm is

less than or equal to unity. Therefore, it can be seen that natural frequencies predicted based on the nonlocal third-order
plate theory are smaller than those based on local theory, while The maximum deflections predicted by nonlocal theory are
larger than one predicted by local theory.
Table 3

Non-dimensional maximum center deflection ðw̄ ¼ �w� ðEh2=Q0a4Þ � 102
Þ of simply supported plate subjected to point load Q0 at center (Q0 ¼ 1, a ¼ 10,

E ¼ 30�106, n ¼ 0.3, 100 term series).

a/b a/h m Third-order First-order Classical

1 10 0 0.5137 0.5147 0.4609

0.5 0.8072 0.821 0.5752

1 1.1008 1.1274 0.6894

1.5 1.3944 1.4337 0.8037

2 1.688 1.7401 0.918

2.5 1.9816 2.0465 1.0322

3 2.2751 2.3528 1.1465

50 0 0.463 0.463 0.4609

0.5 0.585 0.585 0.5752

1 0.7069 0.707 0.6894

1.5 0.8288 0.8289 0.8037

2 0.9508 0.9509 0.918

2.5 1.0727 1.0728 1.0322

3 1.1947 1.1948 1.1465

100 0 0.4614 0.4614 0.4609

0.5 0.5776 0.5776 0.5752

1 0.6938 0.6938 0.6894

1.5 0.81 0.81 0.8037

2 0.9262 0.9262 0.918

2.5 1.0424 1.0424 1.0322

3 1.1586 1.1586 1.1465

2 10 0 0.2165 0.2183 0.1685

0.5 0.6528 0.7092 0.2753

1 1.089 1.2002 0.3821

1.5 1.5253 1.6911 0.4889

2 1.9616 2.182 0.5957

2.5 2.3979 2.6729 0.7025

3 2.8341 3.1638 0.8093

50 0 0.1705 0.1705 0.1685

0.5 0.2926 0.2927 0.2753

1 0.4146 0.4148 0.3821

1.5 0.5367 0.537 0.4889

2 0.6587 0.6592 0.5957

2.5 0.7808 0.7813 0.7025

3 0.9029 0.9035 0.8093

100 0 0.169 0.169 0.1685

0.5 0.2796 0.2796 0.2753

1 0.3903 0.3903 0.3821

1.5 0.5009 0.5009 0.4889

2 0.6115 0.6116 0.5957

2.5 0.7222 0.7222 0.7025

3 0.8328 0.8328 0.8093
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In Fig. 1, the variation of F11 respect to
ffiffiffiffimp =a and a/b is presented. It can be seen that where

ffiffiffiffimp =a51, the effect of
nonlocal parameter Fnm can be neglected, while it has significant effect on the results when

ffiffiffiffimp =ab1. Also it has been
shown that Fnm will be increases with increasing aspect ratio a/b.

In comparison with the first-order plate theory, difference between the maximum deflection in nonlocal first-order and
nonlocal third-order theories is larger than one in the corresponding local theories whereas the difference between natural
frequencies in nonlocal first-order and nonlocal third-order theories is smaller than one in the corresponding local theories.
Furthermore nonlocal theory can predict the higher-order frequencies more accurately than local theory. As a result, the
nonlocal theory softens the plate and makes it more flexible.

Table 1 shows that the coefficient Fnm decreases with decreasing nonlocal parameter
ffiffiffiffimp =a or increasing aspect ratio a/b.

Therefore, the natural frequencies decrease when nonlocal parameter decreases. Table 2–4 contain the numerical results of
Table 4

Non-dimensional first mode frequency ðo11 ¼ o11h
ffiffiffiffiffiffiffiffiffi
r=G

p
Þ of simply supported plate. (a ¼ 10, E ¼ 30�106, n ¼ 0.3).

a/b a/h m Third-order First-order Classical

1 10 0 0.0935 0.0930 0.0963

1 0.0854 0.0850 0.0880

2 0.0791 0.0788 0.0816

3 0.0741 0.0737 0.0763

4 0.0699 0.0696 0.0720

5 0.0663 0.0660 0.0683

20 0 0.0239 0.0239 0.0241

1 0.0218 0.0218 0.0220

2 0.0202 0.0202 0.0204

3 0.0189 0.0189 0.0191

4 0.0179 0.0178 0.0180

5 0.017 0.0169 0.0171

2 10 0 0.0591 0.0589 0.0602

1 0.0557 0.0556 0.0568

2 0.0529 0.0527 0.0539

3 0.0505 0.0503 0.0514

4 0.0483 0.0482 0.0493

5 0.0464 0.0463 0.0473

20 0 0.0150 0.0150 0.0150

1 0.0141 0.0141 0.0142

2 0.0134 0.0134 0.0135

3 0.0128 0.0128 0.0129

4 0.0123 0.0123 0.0123

5 0.0118 0.0118 0.0118

Table 5

Non-dimensional higher order frequencies ðō ¼ oh
ffiffiffiffiffiffiffiffiffi
r=G

p
Þ of simply supported plate. (E ¼ 30�106, n ¼ 0.3, a ¼ 10, a/b ¼ 1, a/h ¼ 10).

Frequencies m Third-order First-order Classical

o11 0 0.0935 0.0930 0.0963

1 0.0854 0.0850 0.0880

2 0.0791 0.0788 0.0816

3 0.0741 0.0737 0.0763

4 0.0699 0.0696 0.0720

5 0.0663 0.0660 0.0683

o22 0 0.3458 0.3414 0.3853

1 0.2585 0.2552 0.288

2 0.2153 0.2126 0.2399

3 0.1884 0.186 0.2099

4 0.1696 0.1674 0.1889

5 0.1555 0.1535 0.1732

o33 0 0.702 0.6889 0.8669

1 0.4213 0.4134 0.5202

2 0.329 0.3228 0.4063

3 0.279 0.2738 0.3446

4 0.2466 0.242 0.3045

5 0.2233 0.2191 0.2757
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nonlocal classical, first-order and third-order theories. The following parameters are used to obtain the numerical values:

a ¼ 10; E ¼ 30� 106; n ¼ 0:3; r ¼ 1, (56)

where a, E, n, r are plate length, Young modules, Poisson’s ratio and plate density.
The non-dimensional quantities for maximum deflection and natural frequencies are:

w̄ ¼ �w�
Eh3

q0a4

 !
� 102; w̄ ¼ �w�

Eh3

Q0a4

 !
� 102; ō ¼ oh

ffiffiffiffi
r
G

r
, (57)

where q0 and Q0 are the magnitude of the uniform and point load. (Reddy, [10])
Tables 2 and 3 compare the results of non-dimensional maximum deflection in three nonlocal plate theories for

different values of nonlocal parameter and thickness for square and rectangular plates subjected to uniform and point
loads. According to these results, it can be seen that the nonlocal theory predicts larger deflections. The results of first-order
and third-order theories are almost the same for all values of m.

Tables 4 and 5 contain natural frequencies of third-order nonlocal plate theories for different values of nonlocal
parameter and aspect ratio. Again, it can be seen that nonlocal theories predict smaller values of natural frequencies than
local theories especially for higher order frequencies (Table 5). Thus the local theories overestimate the frequencies. From
the results presented in Tables 2–4, it follows that the difference between the results of the third-order theory and other
theories increase with the thickness, nonlocal parameter, and mode number. Furthermore, it is observed that the difference
between nonlocal third-order and first-order is slightly increased with increasing the nonlocal parameter and thickness of
the plate but it is still negligible.

8. Conclusions

In this paper, equations of motion for nonlocal third-order shear deformation plate theory have been derived, and
analytical solutions for bending and free vibration are also presented to bring out the effect of nonlocal parameters.
Numerical results are presented for simply supported rectangular plates to illustrate the effects of nonlocal theories on
plate response compared to the local theories. Nonlocal theory can be applied for the analysis of nano plates where the
small size effects are significant. The effect of nonlocal constitutive relations is to increase the magnitude of deflections and
decrease the amplitude of frequencies. In addition, the difference between nonlocal theories and local theories is
significant for high value of the nonlocal parameter.
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